CHÀO MỪNG CÁC BẠN ĐẾN VỚI TRANG WEBSITE CỦA LẠI VĂN KHƯƠNG
Quý vị chưa đăng nhập hoặc chưa đăng ký làm thành
viên, vì vậy chưa thể tải được các tài liệu của
Thư viện về máy tính của mình.
Nếu chưa đăng ký, hãy nhấn vào chữ ĐK thành viên ở phía bên trái, hoặc xem phim hướng dẫn tại đây
Nếu đã đăng ký rồi, quý vị có thể đăng nhập ở ngay phía bên trái.
Nếu chưa đăng ký, hãy nhấn vào chữ ĐK thành viên ở phía bên trái, hoặc xem phim hướng dẫn tại đây
Nếu đã đăng ký rồi, quý vị có thể đăng nhập ở ngay phía bên trái.
Liên kết các thư viện quốc gia
Bai tap HHKG

- 0 / 0
(Tài liệu chưa được thẩm định)
Nguồn:
Người gửi: Lai Van Khuong (trang riêng)
Ngày gửi: 07h:18' 27-05-2013
Dung lượng: 93.9 KB
Số lượt tải: 4
Nguồn:
Người gửi: Lai Van Khuong (trang riêng)
Ngày gửi: 07h:18' 27-05-2013
Dung lượng: 93.9 KB
Số lượt tải: 4
Số lượt thích:
0 người
Bài tập HHTĐKG
( 1 TọA Độ ĐIểM Và VECTƠ
Bài 1: Trong không gian Oxyz cho A(0;1;2) ; B( 2;3;1) ; C(2;2;-1)
Tính .
Chứng tỏ rằng OABC là một hình chữ nhật tính diện tích hình chữ nhật đó.
Viết phương trình mặt phẳng (ABC).
Cho S(0;0;5).Chứng tỏ rằng S.OABC là hình chóp.Tính thể tích hình chóp.
Bài 2: Cho bốn điểm A(1;0;0) , B(0;1;0) , C(0;0;1) , D(-2;1;-1)
Chứng minh rằng A,B,C,D là bốn đỉnh của tứ diện.
Tìm tọa độ trọng tâm G của tứ diện ABCD.
Tính các góc của tam giác ABC.
Tính diện tích tam giác BCD.
Tính thể tích tứ diện ABCD và độ dài đường cao của tứ diện hạ từ đỉnh A.
Bài 3: Cho hình hộp chữ nhật ABCD.A’B’C’D’biết A(0,0,0), B(1;0;0), D(0;2;0), A’(0;0;3), C’(1;2;3).
Tìm tọa độ các đỉnh còn lại của hình hộp.
Tính thể tích hình hộp.
Chứng tỏ rằng AC’ đi qua trọng tâm của hai tam giác A’BD và B’CD’.
Tìm tọa độ điểm H là hình chiếu vuông góc của D lên đoạn A’C.
Bài 4: Trong không gian tọa độ Oxyz cho điểm A(2;3;4). Gọi M1, M2, M3 lần lượt là hình chiếu của A lên ba trục tọa độ Ox;Oy,Oz và N1, N2, N3 là hình chiếu của A lên ba mặt phẳng tọa độOxy,Oyz, Ozx.
a) Tìm tọa độ các điểm M1, M2, M3 và N1, N2, N3.
b) Chứng minh rằng N1N2 ( AN3 .
c) Gọi P,Q là các điểm chia đoạn N1N2, OA theo tỷ số k xác định k để PQ//M1N1.
Bài 5:a/.Cho ba điểm A(2 ; 5 ; 3), B(3 ; 7 ; 4), C(x ; y ; 6).Tìm x, y để A, B, C thẳng hàng
b/. Cho hai điểm A(-1 ; 6 ; 6), B(3 ; -6 ; -2).Tìm M thuộc mp(Oxy) sao cho MA + MB nhỏ nhất.
c/. Tìm trên Oy điểm cách đều hai điểm A(3 ; 1 ; 0) và B(-2 ; 4 ; 1).
d/. Tìm trên mặt phẳng Oxz cách đều ba điểm A(1 ; 1; 1), B(-1 ; 1 ; 0),C(3 ;1 ; -1).
e/. Cho hai điểm A(2 ; -1 ; 7), B(4 ; 5 ; -2). Đường thẳng AB cắt mp(Oyz) tại điểm M. Điểm M chia đọan AB theo tỉ số nào? Tìm tọa độ điểm M.
Bài 6: Trong không gian tọa độ Oxyz cho A(1 ; 1 ; 0), B0 ; 2 ; 1), C(1 ; 0 ; 2), D(1 ; 1 ; 1)
Chứng minh bốn điểm không đồng phẳng. Tính thể tích tứ diện ABCD.
Tìm tọa độ trọng tâm của tam giác ABC, trọng tâm tứ diện ABCD.
Tính diện tích các mẳt của tứ diện.
Tính độ dài các đường cao của khối tứ diện.
Tính góc giữa hai đường thẳng AB và CD.
Viết phương trình mặt cầu ngoại tiếp tứ diện ABCD.
Bài 7: Cho bốn điểm A(2 ; -1 ; 6), B(-3 ; -1 ; -4), C(5 ; -1 ; 0), D(1 ; 2 ; 1).
Chứng minh ABC
( 1 TọA Độ ĐIểM Và VECTƠ
Bài 1: Trong không gian Oxyz cho A(0;1;2) ; B( 2;3;1) ; C(2;2;-1)
Tính .
Chứng tỏ rằng OABC là một hình chữ nhật tính diện tích hình chữ nhật đó.
Viết phương trình mặt phẳng (ABC).
Cho S(0;0;5).Chứng tỏ rằng S.OABC là hình chóp.Tính thể tích hình chóp.
Bài 2: Cho bốn điểm A(1;0;0) , B(0;1;0) , C(0;0;1) , D(-2;1;-1)
Chứng minh rằng A,B,C,D là bốn đỉnh của tứ diện.
Tìm tọa độ trọng tâm G của tứ diện ABCD.
Tính các góc của tam giác ABC.
Tính diện tích tam giác BCD.
Tính thể tích tứ diện ABCD và độ dài đường cao của tứ diện hạ từ đỉnh A.
Bài 3: Cho hình hộp chữ nhật ABCD.A’B’C’D’biết A(0,0,0), B(1;0;0), D(0;2;0), A’(0;0;3), C’(1;2;3).
Tìm tọa độ các đỉnh còn lại của hình hộp.
Tính thể tích hình hộp.
Chứng tỏ rằng AC’ đi qua trọng tâm của hai tam giác A’BD và B’CD’.
Tìm tọa độ điểm H là hình chiếu vuông góc của D lên đoạn A’C.
Bài 4: Trong không gian tọa độ Oxyz cho điểm A(2;3;4). Gọi M1, M2, M3 lần lượt là hình chiếu của A lên ba trục tọa độ Ox;Oy,Oz và N1, N2, N3 là hình chiếu của A lên ba mặt phẳng tọa độOxy,Oyz, Ozx.
a) Tìm tọa độ các điểm M1, M2, M3 và N1, N2, N3.
b) Chứng minh rằng N1N2 ( AN3 .
c) Gọi P,Q là các điểm chia đoạn N1N2, OA theo tỷ số k xác định k để PQ//M1N1.
Bài 5:a/.Cho ba điểm A(2 ; 5 ; 3), B(3 ; 7 ; 4), C(x ; y ; 6).Tìm x, y để A, B, C thẳng hàng
b/. Cho hai điểm A(-1 ; 6 ; 6), B(3 ; -6 ; -2).Tìm M thuộc mp(Oxy) sao cho MA + MB nhỏ nhất.
c/. Tìm trên Oy điểm cách đều hai điểm A(3 ; 1 ; 0) và B(-2 ; 4 ; 1).
d/. Tìm trên mặt phẳng Oxz cách đều ba điểm A(1 ; 1; 1), B(-1 ; 1 ; 0),C(3 ;1 ; -1).
e/. Cho hai điểm A(2 ; -1 ; 7), B(4 ; 5 ; -2). Đường thẳng AB cắt mp(Oyz) tại điểm M. Điểm M chia đọan AB theo tỉ số nào? Tìm tọa độ điểm M.
Bài 6: Trong không gian tọa độ Oxyz cho A(1 ; 1 ; 0), B0 ; 2 ; 1), C(1 ; 0 ; 2), D(1 ; 1 ; 1)
Chứng minh bốn điểm không đồng phẳng. Tính thể tích tứ diện ABCD.
Tìm tọa độ trọng tâm của tam giác ABC, trọng tâm tứ diện ABCD.
Tính diện tích các mẳt của tứ diện.
Tính độ dài các đường cao của khối tứ diện.
Tính góc giữa hai đường thẳng AB và CD.
Viết phương trình mặt cầu ngoại tiếp tứ diện ABCD.
Bài 7: Cho bốn điểm A(2 ; -1 ; 6), B(-3 ; -1 ; -4), C(5 ; -1 ; 0), D(1 ; 2 ; 1).
Chứng minh ABC
 
↓ CHÚ Ý: Bài giảng này được nén lại dưới dạng RAR và có thể chứa nhiều file. Hệ thống chỉ hiển thị 1 file trong số đó, đề nghị các thầy cô KIỂM TRA KỸ TRƯỚC KHI NHẬN XÉT ↓






